Name: \qquad ID\#: \qquad

Circle your problem solving section number below:

- Instructor: Ms Joumana Tannous

Section 1 @ 1:00 M
Section 2 @ 3:00 M
Section 3 @ 4:00 M

- Instructor: Mrs Maha Itani-Hatab

Section 4 @ 11:00 Tu Section 5 @ 8:00 Tu Section 6 @ 12:30 Tu

- Instructor: Ms. Michella Bou Eid

Section 7 @ 12:30 Th Section 8 @ 2:00 Th \quad Section 9 @ 5:00 Th

- Instructor: Ms Najwa Fuleihan

Section 10 @ 8:00 Tu
Section 11 @ 12:30 Tu
Section 12 @ 11:00 Tu

Page	Grade
2	$/ 16$
3	$/ 20$
4	$/ 11$
5	$/ 16$
6	$/ 21$
7	$/ 100$
Total	

1. Construct the 3×3 lower triangular matrix A whose non zero entries $a_{i j}$ are
(8 pts) $\quad a_{i j}= \begin{cases}2^{j}-i & \text { if } \quad i \neq j \\ i^{2}-2 & \text { if } \quad i=j\end{cases}$
2. Evaluate $\left[\begin{array}{ll}2 & 1\end{array}\right]\left(\left[\begin{array}{l}3 \\ 1\end{array}\right]\left[\begin{array}{lll}1 & -1 & -2\end{array}\right]+2\left[\begin{array}{rr}-2 & 1 \\ 0 & -1 \\ 2 & 4\end{array}\right]^{T}\right)$
3. Find x and y so that the operations can be performed

$$
\left(\begin{array}{ll}
-3 & x \\
2 y & 0
\end{array}\right)^{T}+\left(\begin{array}{rr}
1 & 2 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 4 \\
1 & 2
\end{array}\right)=\left(\begin{array}{rr}
-1 & 6 \\
5 & -4
\end{array}\right)
$$

(8 pts)
4. Let A be a (2×3) matrix, B a (2×2) matrix, C a (2×3) and D a (3×3) matrix.
a. Determine, if possible, the size (dimension) of each of the following matrices

- $\left(A^{T} B^{2} C\right)^{0}$
(8 pts)
- $(B A D)^{0}$
- $B C^{-1}$
- $\quad(A+C) D$
b. Determine, if possible, the size (dimension) of the identity matrix I and the zero matrix O so that the operations can be performed

$$
A D^{-1} I-B O
$$

(4 pts)
5. Given the matrix $A=\left(\begin{array}{rrr}3 & 2 & -1 \\ 1 & 6 & -3 \\ 2 & -4 & 0\end{array}\right)$.
a) Rewrite the first two columns (Use the method of repeated columns) to calculate the determinant of A.
(3 pts)
b) Consider the system $\left\{\begin{array}{l}3 x+2 y-z=1 \\ x+6 y-3 z=2 \\ 2 x-4 y=0\end{array}\right.$.Use Cramer's rule to find only y.
(5 pts)
6. Explain why the value of the following determinant $\left|\begin{array}{llll}2 & 3 & 4 & 5 \\ 4 & 0 & 8 & 1 \\ 2 & 3 & 4 & 5 \\ 7 & 6 & 0 & 9\end{array}\right|$ is zero. (3 pts)
7. Consider the matrix $\mathrm{A}=\left(\begin{array}{rrr}2 & -3 & 5 \\ 3 & -1 & -1 \\ 1 & 0 & -1\end{array}\right)$. Find A^{-1} using the Gaussian elimination.
$(16 \mathrm{pts})$

Then use it to solve the system: $\left\{\begin{array}{l}x-3 y+5 z=5-x \\ 3 x-y-z=1 \\ x+2 y-z=2 y\end{array}\right.$
8. Let $A=\left(\begin{array}{rrrrr}2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & -4\end{array}\right), B=\left(\begin{array}{rrr}3 & 2 & 6 \\ 1 & -1 & 4 \\ 0 & 1 & -2\end{array}\right)$ and $C=\left(\begin{array}{rrr}4 & 0 & 0 \\ 11 & 1 & 0 \\ 5 & 8 & 1\end{array}\right)$.
a. Use the method of cofactors to evaluate the determinant of the matrix B.
(4 pts)
b. Let I be the identity matrix and D a 3×3 matrix. Determine the value of the determinant of the matrix D so that $\operatorname{det}\left(I^{-1} A\right)=\operatorname{det}\left(2 D C^{-1} B^{T}\right)$.
(8 pts)
c. Find $\operatorname{det}(2 A)^{-1}$
(4 pts)
9. Solve the matrix equation

$$
\left(\begin{array}{c}
3 y+1 \\
x-5 \\
x y-2
\end{array}\right)+2\left(\begin{array}{c}
y-2 \\
x^{2}+x \\
y+3
\end{array}\right)=\left(\begin{array}{c}
2 \\
3 x+3 \\
x^{2} y
\end{array}\right)
$$

10. Find a 2×2 matrix A such that $\left((2 A)^{T}-I\right)^{-1}=\left(\begin{array}{rr}2 & -3 \\ -1 & 1\end{array}\right)$ (8 pts)
11. Let A be a 2×2 matrix such that $\operatorname{det}\left(A^{4}\right)+\operatorname{det}\left(A A^{T}\right)=0$. Show that A has no inverse.
(5 pts)
